| Name | Date | Block | |---|--|---| | | Mini Measurement | Lab | | Purpose | | | | To practice taking common To practice using metric uni | | | | Materials | | | | Metric ruler
Various size blocks
Celsius thermometer | Marbles
Small and large beakers | 10 and 50 mL graduated cylinders
Triple beam balance | | Procedure | | | | described below with the material station. When you finish taking the | s that you find at the lab station. Be s required measurements you will have | will have a few minutes to complete various tasks as
sure to fill in all of the required information from each
to complete the questions at the end of this handout.
where you begin, you will be instructed as to which | | Data-Be sure to include the prop | er units for each measurement! | | | | on to measure the length of various ob | jects: | | A. Length of this piece of pape | r: | | | B. Width of this piece of paper | <u>:</u> | | | Use the meter stick found at this | station to measure: | | | C. Height of the lab table: | | | | 2. Station 2 -measuring liquid volution Use the graduated cylinders fou DO NOT SPILL OR ADD ANY L | nd at this station to measure the volum | e of the liquid in each graduated cylinder. | | A. Volume of liquid in small | graduated cylinder: | | | B. Volume of liquid in large | graduated cylinder: | | | until the temperature stops chan | | es of the contents of each beaker. Make sure to wait UARD" | | A. Temperature of liquid A: | | | | B. Temperature of liquid B- | (ice water): | | | A. Wo | od rectangular block | (measure in centimeters) | | |--------------------------------------|---|---|--| | | Length | Width | Height | | | pilling any of the wate | · , | FULLY place the rock inside the graduated cylinder d the new level of water. You will calculate the actual | | | | | | | | | ed cylinder with rock: | • | | The time w
powder or
be placed | neasuring mass
ill come when you wil | I have to find the mass of a substance | e that cannot be weighed without a container (liquid, elp you to find the mass of a substance when it must | | The time w
powder or
be placed | neasuring mass
ill come when you wil
substance that may n
nto a container. | I have to find the mass of a substanc
ot stay put). The following steps will h | e that cannot be weighed without a container (liquid, | | The time w
powder or
be placed | neasuring mass ill come when you will substance that may n into a container. If the following: a. mass of empt | I have to find the mass of a substanc
ot stay put). The following steps will h | e that cannot be weighed without a container (liquid, elp you to find the mass of a substance when it must | ## Station 2 1. How much greater is the volume in the large graduated cylinder than the volume in the small graduated cylinder? ## Station 3 1. Approximately, what is the temperature of liquid B in Fahrenheit (F)? ## Station 4 - 1. Use the formula length x width x height to determine the volume of the rectangular block. - 2. What is the volume of the rock? ## Station 5 1. What is the mass of the 10 marbles? Conclusion: What is the purpose of using the metric system in science?